Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(20): 10855-10869, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30285153

RESUMO

Homologous recombination is essential to genome maintenance, and also to genome diversification. In virtually all organisms, homologous recombination depends on the RecA/Rad51-family recombinases, which catalyze ATP-dependent formation of homologous joints-critical intermediates in homologous recombination. RecA/Rad51 binds first to single-stranded (ss) DNA at a damaged site to form a spiral nucleoprotein filament, after which double-stranded (ds) DNA interacts with the filament to search for sequence homology and to form consecutive base pairs with ssDNA ('pairing'). How sequence homology is recognized and what exact role filament formation plays remain unknown. We addressed the question of whether filament formation is a prerequisite for homologous joint formation. To this end we constructed a nonpolymerizing (np) head-to-tail-fused RecA dimer (npRecA dimer) and an npRecA monomer. The npRecA dimer bound to ssDNA, but did not form continuous filaments upon binding to DNA; it formed beads-on-string structures exclusively. Although its efficiency was lower, the npRecA dimer catalyzed the formation of D-loops (a type of homologous joint), whereas the npRecA monomer was completely defective. Thus, filament formation contributes to efficiency, but is not essential to sequence-homology recognition and pairing, for which a head-to-tail dimer form of RecA protomer is required and sufficient.


Assuntos
DNA de Cadeia Simples/metabolismo , Recombinação Homóloga , Multimerização Proteica , Recombinases Rec A/fisiologia , Pareamento de Bases/fisiologia , Catálise , DNA de Cadeia Simples/química , Escherichia coli , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica/fisiologia , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
2.
Bioorg Med Chem ; 26(8): 1412-1417, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496413

RESUMO

Catalytic antibody 7B9, which was elicited against p-nitrobenzyl phosphonate transition-state analogue (TSA) 1, hydrolyzes a wide range of p-nitrobenzyl monoesters and thus shows broad substrate tolerance. To reveal the molecular basis of this substrate tolerance, the 7B9 Fab fragment complexed with p-nitrobenzyl ethylphosphonate 2 was crystallized and the three-dimensional structure was determined. The crystal structure showed that the strongly antigenic p-nitrobenzyl moiety occupied a relatively shallow antigen-combining site and therefore the alkyl moiety was located outside the pocket. These results support the observed broad substrate tolerance of 7B9 and help rationalize how 7B9 can catalyze various p-nitrobenzyl ester derivatives. The crystal structure also showed that three amino acid residues (AsnH33, SerH95, and ArgL96) were placed in key positions to form hydrogen bonds with the phosphonate oxygens of the transitions-state analogue. In addition, the role of these amino acid residues was examined by site-directed mutagenesis to alanine: all mutants (AsnH33Ala, SerH95Ala, and ArgL96Ala) showed no detectable catalytic activity. Coupling the findings from our structural studies with these mutagenesis results clarified the structural basis of the observed broad substrate tolerance of antibody 7B9-catalyzed hydrolyses. Our findings provide new strategies for the generation of catalytic antibodies that accept a broad range of substrates, aiding their practical application in synthetic organic chemistry.


Assuntos
Anticorpos Catalíticos/metabolismo , Ésteres/metabolismo , Nitrobenzenos/metabolismo , Biocatálise , Ésteres/química , Hidrólise , Modelos Moleculares , Estrutura Molecular , Nitrobenzenos/química , Relação Estrutura-Atividade
3.
Genetics ; 190(4): 1379-88, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22298704

RESUMO

Molecules in the extracellular matrix (ECM) regulate cellular behavior in both development and pathology. Fibulin-1 is a conserved ECM protein. The Caenorhabditis elegans ortholog, FBL-1, regulates gonad-arm elongation and expansion by acting antagonistically to GON-1, an ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family protease. The elongation of gonad arms is directed by gonadal distal tip cells (DTCs). Here we report that a dominant mutation in the EMB-9/type IV collagen α1 subunit can compensate for loss of FBL-1 activity in gonadogenesis. A specific amino acid substitution in the noncollagenous 1 (NC1) domain of EMB-9 suppressed the fbl-1 null mutant. FBL-1 was required to maintain wild-type EMB-9 in the basement membrane (BM), whereas mutant EMB-9 was retained in the absence of FBL-1. EMB-9 (either wild type or mutant) localization in the BM enhanced PAT-3/ß-integrin expression in DTCs. In addition, overexpression of PAT-3 partially rescued the DTC migration defects in fbl-1 mutants, suggesting that EMB-9 acts in part through PAT-3 to control DTC migration. In contrast to the suppression of fbl-1(tk45), mutant EMB-9 enhanced the gonadal defects of gon-1(e1254), suggesting that it gained a function similar to that of wild-type FBL-1, which promotes DTC migration by inhibiting GON-1. We propose that FBL-1 and GON-1 control EMB-9 accumulation in the BM and promote PAT-3 expression to control DTC migration.


Assuntos
Proteínas ADAM/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno Tipo IV/metabolismo , Gônadas/citologia , Proteínas ADAM/genética , Alelos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/genética , Movimento Celular , Colágeno Tipo IV/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mutação , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Transporte Proteico
4.
Nat Cell Biol ; 13(6): 708-14, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21572421

RESUMO

The assembly of a functional mitotic spindle is crucial for achieving successful mitosis. Aurora A kinase is one of the key regulators of mitotic events, including mitotic entry, centrosome maturation and spindle bipolarity. Caenorhabditis elegans Aurora A (AIR-1) is responsible for the assembly of γ-tubulin-independent microtubules in early embryos; however, the mechanism by which AIR-1 contributes to microtubule assembly during mitosis has been unclear. Here we show by live-cell imaging and RNA-mediated interference (RNAi)-based modulation of gene activity that AIR-1 has a crucial role in the assembly of chromatin-stimulated microtubules that is independent of the γ-tubulin complex. Surprisingly, the kinase activity of AIR-1 is dispensable for this process. Although the kinase-inactive form of AIR-1 was detected along the microtubules as well as on centrosomes, the kinase-active form of AIR-1 was restricted to centrosomes. Thus, we propose that AIR-1 has a kinase-dependent role at centrosomes and a kinase-independent role for stabilizing spindle microtubules and that coordination of these two roles is crucial for the assembly of mitotic spindles.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aurora Quinases , Western Blotting , Embrião não Mamífero/enzimologia , Fuso Acromático/enzimologia
5.
Proc Natl Acad Sci U S A ; 105(52): 20804-9, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19104038

RESUMO

Mutations in the a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS) family of secreted proteases cause diseases linked to ECM abnormalities. However, the mechanisms by which these enzymes modulate the ECM during development are mostly unexplored. The Caenorhabditis elegans MIG-17/ADAMTS protein is secreted from body wall muscle cells and localizes to the basement membrane (BM) of the developing gonad where it controls directional migration of gonadal leader cells. Here we show that specific amino acid changes in the ECM proteins fibulin-1C (FBL-1C) and type IV collagen (LET-2) result in bypass of the requirement for MIG-17 activity in gonadal leader cell migration in a nidogen (NID-1)-dependent and -independent manner, respectively. The MIG-17, FBL-1C and LET-2 activities are required for proper accumulation of NID-1 at the gonadal BM. However, mutant FBL-1C or LET-2 in the absence of MIG-17 promotes NID-1 localization. Furthermore, overexpression of NID-1 in mig-17 mutants substantially rescues leader cell migration defects. These results suggest that functional interactions among BM molecules are important for MIG-17 control of gonadal leader cell migration. We propose that FBL-1C and LET-2 act downstream of MIG-17-dependent proteolysis to recruit NID-1 and that LET-2 also activates a NID-1-independent pathway, thereby inducing the remodeling of the BM required for directional control of leader cell migration.


Assuntos
Membrana Basal/enzimologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Movimento Celular/fisiologia , Desintegrinas/metabolismo , Gônadas/enzimologia , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Animais , Membrana Basal/citologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Desintegrinas/genética , Feminino , Gônadas/citologia , Masculino , Glicoproteínas de Membrana/genética , Metaloendopeptidases/genética , Células Musculares/citologia , Células Musculares/enzimologia , Mutação , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...